\relax \@writefile{toc}{\contentsline {chapter}{\numberline {10}Community Composition and Diversity}{285}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{lof}{\contentsline {figure}{\numberline {10.1}{\ignorespaces Empirical rank--abundance distributions of successional plant communities (old-fields) within the temperate deciduous forest biome of North America. ``Year'' indicates the time since abandonment from agriculture. Data from the Buell-Small succession study (http://www.ecostudies.org/bss/)}}{285}} \newlabel{fig:BSsuc}{{10.1}{285}} \@writefile{toc}{\contentsline {section}{\numberline {10.1}Species Composition}{286}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.1.1}Measures of abundance}{286}} \@writefile{lof}{\contentsline {figure}{\numberline {10.2}{\ignorespaces Hypothetical species composition for four sites (A--D).}}{287}} \newlabel{fig:dens}{{10.2}{287}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.1.2}Distance}{287}} \citation{Magurran2004} \newlabel{eq:euc}{{10.1}{289}} \newlabel{eq:sor}{{10.2}{289}} \@writefile{toc}{\contentsline {subsubsection}{Displaying multidimensional distances}{289}} \newlabel{mds1}{{10.3a}{290}} \newlabel{sub@mds1}{{(a)}{a}} \newlabel{mds2}{{10.3b}{290}} \newlabel{sub@mds2}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {10.3}{\ignorespaces Nonmetric multidimensional (NMDS) plots showing approximate distances between sites. These two figures display the same raw data, but Euclidean distances tend to emphasize differences due to the more abundant species, whereas Bray-Curtis does not. Because NMDS provides iterative optimizations, it will find slightly different arrangements each time you run it.}}{290}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Euclidean distances}}}{290}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Bray--Curits distances}}}{290}} \newlabel{fig:mds}{{10.3}{290}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.1.3}Similarity}{290}} \citation{Morlon:2008tx,Plotkin:2002eu} \citation{Crow1970,Vellend2005a} \newlabel{eq:ss}{{10.3}{291}} \@writefile{toc}{\contentsline {section}{\numberline {10.2}Diversity}{291}} \citation{Hill:1973it,Keylock:2005fy} \citation{Magurran2004} \citation{Keylock:2005fy} \citation{Harte:2008nq,Pueyo:2007ow} \@writefile{lot}{\contentsline {table}{\numberline {10.1}{\ignorespaces Four hypothetical stream invertebrate communities. Data are total numbers of individuals collected in ten samples (sums across samples). Diversity indices (Shannon-Wiener, Simpson's) explained below.}}{292}} \newlabel{tab:inverts}{{10.1}{292}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.2.1}Measurements of variety}{292}} \citation{Hurlbert1971} \citation{May1976} \citation{Nei1987} \citation{Lande2000} \citation{Lande1996,Stevens:2003nc} \citation{Lande1996} \citation{Keylock:2005fy} \newlabel{eq:H1}{{10.4}{293}} \@writefile{toc}{\contentsline {subsubsection}{Relations between number of species, relative abundances, and diversity}{293}} \newlabel{eqab}{{10.4a}{294}} \newlabel{sub@eqab}{{(a)}{a}} \newlabel{ab90}{{10.4b}{294}} \newlabel{sub@ab90}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {10.4}{\ignorespaces Relations between richness, Shannon-Weiner, and Simpson's diversities (note difference in $y$-axis scale between the figures). Communities of 2--20 species are composed of either equally abundant species \subref {eqab} or with the most common species equal to 90\% of the community \subref {ab90}.}}{294}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Equally abundant}}}{294}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Most common sp. = 90\%}}}{294}} \newlabel{fig:divs}{{10.4}{294}} \@writefile{toc}{\contentsline {subsubsection}{Simpson's diversity, as a variance of composition}{295}} \citation{Keylock:2005fy} \citation{Gotelli2001a} \newlabel{simp1}{{10.5a}{296}} \newlabel{sub@simp1}{{(a)}{a}} \newlabel{simp2}{{10.5b}{296}} \newlabel{sub@simp2}{{(b)}{b}} \newlabel{simp3}{{10.5c}{296}} \newlabel{sub@simp3}{{(c)}{c}} \@writefile{lof}{\contentsline {figure}{\numberline {10.5}{\ignorespaces Plotting three examples of species composition. The centroid of each composition is a solid black dot. The third example (on right) has zero abundances of species C. Simpson's diversity is the variance of these points around the centroid. Individual points are not plotted at precisely 0 or 1 --- they are plotted with a bit of jitter or noise so that they do not overlap entirely.}}{296}} \newlabel{fig:Simp}{{10.5}{296}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$S_D = 0.67$}}}{296}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$S_D = 0.50$}}}{296}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$S_D = 0.28$}}}{296}} \citation{Gotelli2001a,Magurran2004} \citation{Condit2002,Oksanen:2008} \citation{Wiens1989} \@writefile{toc}{\contentsline {subsection}{\numberline {10.2.2}Rarefaction and total species richness}{297}} \@writefile{toc}{\contentsline {subsubsection}{An example of rarefaction and total species richness}{297}} \@writefile{lof}{\contentsline {figure}{\numberline {10.6}{\ignorespaces Baseline tree species richness estimation based on ten 1\tmspace +\thinmuskip {.1667em}ha plots, using individual-based rarefaction, and two different total richness estimators, ACE and Chao 2. The true total tree richness in the 50\tmspace +\thinmuskip {.1667em}ha plot is present for comparison.}}{298}} \newlabel{fig:est}{{10.6}{298}} \citation{Magurran2004} \citation{Preston1948,Preston1962} \@writefile{toc}{\contentsline {section}{\numberline {10.3}Distributions}{299}} \citation{May1975} \citation{Condit2002} \citation{May1975} \citation{Condit2002} \citation{May1975} \citation{Condit2002} \citation{May1975} \@writefile{toc}{\contentsline {subsection}{\numberline {10.3.1}Log-normal distribution}{300}} \newlabel{bci1}{{10.7a}{300}} \newlabel{sub@bci1}{{(a)}{a}} \newlabel{bci2}{{10.7b}{300}} \newlabel{sub@bci2}{{(b)}{b}} \newlabel{bci3}{{10.7c}{300}} \newlabel{sub@bci3}{{(c)}{c}} \@writefile{lof}{\contentsline {figure}{\numberline {10.7}{\ignorespaces Three related types of distributions of tree species densities from Barro Colorado Island \cite {Condit2002}. \subref {bci1} Histogram of raw data, \subref {bci2} histogram of log-transformed data; typically referred to as the ``species--abundance distribution,'' accompanied here with the normal probability density function, \subref {bci3} the ``rank--abundance distribution,'' as typically presented with the log-transformed data, with the complement of the cumulative probability density function (1-pdf) \cite {May1975}. Normal distributions were applied using the mean and standard deviation from the log-transformed data, times the total number of species.}}{300}} \newlabel{fig:bci}{{10.7}{300}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Raw data}}}{300}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Species--abundance dist.}}}{300}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Rank--abundance dist.}}}{300}} \citation{Magurran2004} \citation{May1975,Motomura1932} \@writefile{toc}{\contentsline {paragraph}{Log-normal abundance distributions (Fig. 10.7\hbox {})}{301}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.3.2}Other distributions}{301}} \citation{Fisher1943} \citation{Magurran2004} \citation{May1975} \citation{May1975} \citation{MacArthur1957} \citation{Magurran2004,Tokeshi:1999fv} \citation{Sugihara1980,Tokeshi1990} \citation{Tokeshi:1999fv} \newlabel{eq:geomf}{{10.6}{302}} \newlabel{eq:fisher}{{10.7}{302}} \newlabel{eq:1}{{10.8}{302}} \newlabel{eq:brokenstick}{{10.9}{302}} \citation{Condit2002} \citation{Condit2002} \@writefile{lof}{\contentsline {figure}{\numberline {10.8}{\ignorespaces A few common rank--abundance distributions, along with the BCI data \cite {Condit2002}. The log-normal curve is fit to the data, and the broken stick distribution is always determined by the number of species. Here we let the geometric distribution be determined by the abundance of the most common species. The log-series was plotted so that it matched qualitatively the most abundant species.}}{303}} \newlabel{fig:other}{{10.8}{303}} \citation{Magurran2004,Oksanen:2008} \@writefile{toc}{\contentsline {paragraph}{Generating other rank--abundance distributions)}{304}} \@writefile{toc}{\contentsline {paragraph}{Plotting other rank--abundance distributions (Fig. 10.8\hbox {})}{305}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.3.3}Pattern \emph {vs.} process}{305}} \citation{Peters1988} \citation{Hairston:1991sf} \citation{Hubbell2001} \citation{Bell2000,Caswell1976,Hubbell2001} \citation{Ewens:2004zp} \citation{Gotelli:2006bv} \citation{Gotelli1996} \citation{Hubbell2001} \citation{MacArthur1963,MacArthur1967} \citation{Jabot:2009mi} \citation{Jabot:2009mi} \citation{Leibold:2004fe} \citation{Leibold:2004fe} \citation{Hubbell2001} \citation{Volkov:2005rt} \@writefile{toc}{\contentsline {section}{\numberline {10.4}Neutral Theory of Biodiversity and Biogeography}{306}} \@writefile{lof}{\contentsline {figure}{\numberline {10.9}{\ignorespaces A cartoon of a local community of forest canopy trees (small box) nested inside part of the metacommunity of a tropical forest. The true metaccommunity would extend far beyond the boundaries of this figure to include the true potential source of propagules. Shades of grey indicate different species. The local community is a sample of the larger community (such as the 50\tmspace +\thinmuskip {.1667em}ha forest dynamics plot on BCI) and receives migrants from the metacommunity. Mutation gives rise to new species in the metacommunity. For a particular local community, such as a 50\tmspace +\thinmuskip {.1667em}ha plot on an island in the Panama canal, the metacommunity will include not only the surrounding forest on the island, but also Panama, and perhaps much of the neotropics \cite {Jabot:2009mi}.}}{307}} \newlabel{fig:meta}{{10.9}{307}} \@writefile{lof}{\contentsline {figure}{\numberline {10.10}{\ignorespaces Neutral ecological drift. Here we start with 10 species, each with 90 individuals, and let their abundances undergo random walks within a finite local community, with no immigration. Here, one generation is equal to nine deaths and nine births. Note the slow decline in unevennes --- after 1000 deaths, no species has become extinct.}}{308}} \newlabel{fig:drift}{{10.10}{308}} \citation{Alonso:2006pi} \citation{Alonso:2006pi} \citation{Alonso2004,Leigh:1999qr,Volkov:2003ly} \citation{Leibold:2006ey} \citation{Chesson2000} \citation{Chesson2000} \citation{Clark2003c,Wootton2005} \citation{Alonso2004,Etienne:2007fe,Green:2007nx,Jabot:2009mi,Plotkin:2002eu,Volkov:2007sy} \citation{Jabot:2009mi,Latimer:2005ft} \citation{Alonso:2006pi} \@writefile{lot}{\contentsline {table}{\numberline {10.2}{\ignorespaces Comparison of properties and jargon used in ecological and population genetic neutral theory (after Alonso et al. \cite {Alonso:2006pi}). Here $x$ is a continuous variable for relative abundance of a species or allele ($0 \le x \ge 1$, $ x = n/J$). Note this is potentially confused with Fisher's log-series $\delimiter "426830A \phi _n \delimiter "526930B = \theta x^n /n$, which is a discrete species abundance distribution in terms of numbers of individuals, $n$ (not relative abundance), and where $x=b/d$.}}{309}} \newlabel{tab:jargon}{{10.2}{309}} \citation{Caswell1976} \citation{Volkov:2003ly} \@writefile{toc}{\contentsline {subsection}{\numberline {10.4.1}Different flavors of neutral communities}{310}} \citation{Volkov:2003ly} \citation{Volkov:2003ly} \citation{McKane2000,Volkov:2003ly} \newlabel{eq:meta}{{10.10}{311}} \newlabel{eq:Jm}{{10.11}{311}} \newlabel{eq:b}{{10.12}{311}} \newlabel{eq:d}{{10.13}{311}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.4.2}Investigating neutral communities}{312}} \@writefile{toc}{\contentsline {subsubsection}{Pure drift}{313}} \@writefile{lof}{\contentsline {figure}{\numberline {10.11}{\ignorespaces Three snapshots of one community, drifting through time. Shades of grey represent different species. Second row contains rank abundance distributions; third row contains species abundance distributions. Drift results in the slow loss of diversity.}}{314}} \newlabel{fig:comms}{{10.11}{314}} \citation{Clark2003c} \citation{Condit2002} \newlabel{spptable}{{10.12a}{316}} \newlabel{sub@spptable}{{(a)}{a}} \newlabel{vartime}{{10.12b}{316}} \newlabel{sub@vartime}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {10.12}{\ignorespaces Dynamics and average variation within populations. In random walks, average variation (measured with the coefficient of variation) increases with time. }}{316}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {20 populations}}}{316}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Average variability}}}{316}} \newlabel{fig:walks}{{10.12}{316}} \@writefile{toc}{\contentsline {subsubsection}{Real data}{316}} \citation{Etienne2005,Hankin:2007zm,Jabot:2009mi} \citation{Etienne2005,Volkov:2003ly} \citation{Volkov:2003ly} \citation{Jabot:2009mi} \citation{Condit2002} \citation{Etienne2005,Volkov:2003ly} \citation{Condit2002} \citation{Etienne2005,Volkov:2003ly} \citation{Volkov:2005rt,Volkov:2007sy} \@writefile{toc}{\contentsline {subsection}{\numberline {10.4.3}Symmetry and the rare species advantage}{317}} \citation{Etienne2005,Hankin:2007zm,Jabot:2009mi} \newlabel{bcipreston}{{10.13a}{318}} \newlabel{sub@bcipreston}{{(a)}{a}} \newlabel{bciJabot}{{10.13b}{318}} \newlabel{sub@bciJabot}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {10.13}{\ignorespaces Species abundance distributions for BCI trees. \subref {bcipreston} Data for histogram from \cite {Condit2002}, overlain with expected abundances with $\theta $ and $m$ values fitted to the data \cite {Etienne2005, Volkov:2003ly}. \subref {bciJabot} Jabot and Chave found that when they used only species abundances (as did previous investigators) their pattern was similar to previous findings (solid line). However, adding phylogenetic information led to very different expectations (dashed line).}}{318}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Original estimates}}}{318}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Jabot and Chave estimates}}}{318}} \newlabel{fig:Jabot}{{10.13}{318}} \@writefile{toc}{\contentsline {section}{\numberline {10.5}Diversity Partitioning}{318}} \citation{Crist:2006lr,Crist:2003ym,Lande1996} \citation{Whittaker:1960it} \citation{Summerville:2004ym} \citation{Summerville:2004ym} \newlabel{eq:add}{{10.14}{319}} \newlabel{eq:mult}{{10.15}{319}} \@writefile{lof}{\contentsline {figure}{\numberline {10.14}{\ignorespaces Hierarchical sampling of moth species richness in forest patches in Indiana and Ohio, USA \cite {Summerville:2004ym}. $\alpha $-diversity is the diversity of a single site (richness indicated by numbers). $\gamma $-diversity is the total number of species found in any of the samples (here $\gamma =230$\tmspace +\thinmuskip {.1667em}spp.). Additive $\beta $-diversity is the difference, $\gamma - \mathaccentV {bar}016{\alpha }$, or the average number of species \emph {not} observed in a single sample. Diversity partitioning can be done at two levels, sites within ecoregions and ecoregions within the geographic region (see example in text for details). }}{319}} \newlabel{fig:moths}{{10.14}{319}} \citation{Condit2002} \@writefile{lof}{\contentsline {figure}{\numberline {10.15}{\ignorespaces Relations of $\beta _A$ (with additive partitioning) and $\beta _M$ (with multiplicative partitioning) to $\mathaccentV {bar}016{\alpha }$, for a fixed $\gamma =500$ species. In our example, we defined diversity as species richness, so the units of $\beta _A$ and $\alpha $ are number of species per sample, and $\mathaccentV {bar}016{\alpha }$ is the mean number of species in a sample.}}{320}} \newlabel{fig:beta}{{10.15}{320}} \citation{Condit2002,Morlon:2008tx} \citation{Summerville2003,Summerville:2004ym} \@writefile{toc}{\contentsline {subsection}{\numberline {10.5.1}An example of diversity partitioning}{321}} \citation{Summerville:2004ym} \citation{Summerville:2004ym} \citation{Summerville:2004ym} \citation{Veech:2007cr} \newlabel{eq:part2}{{10.16}{322}} \citation{Arrhenius1921,Bell2001,MacArthur1972,MacArthur1963,MacArthur1967,Preston:1960uq,Rosenzweig1995} \citation{Brown1995,Harte:2008nq} \citation{MacArthur1963} \citation{Brown1977} \citation{Hamback:2007yj} \citation{Crawley2001a,Plotkin:2000qe} \@writefile{lof}{\contentsline {figure}{\numberline {10.16}{\ignorespaces Hierarchical partitioning of moth species richness in forest patches \cite {Summerville:2004ym}. See Fig. 10.14\hbox {} for geographical locations.}}{323}} \newlabel{fig:partplot}{{10.16}{323}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.5.2}Species--area relations}{323}} \newlabel{eq:area1}{{10.19}{323}} \newlabel{eq:area2}{{10.20}{323}} \@writefile{lof}{\contentsline {figure}{\numberline {10.17}{\ignorespaces Power law species--area relations.}}{324}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Arithmetic scale}}}{324}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Logarithmic scale}}}{324}} \newlabel{fig:sars}{{10.17}{324}} \@writefile{toc}{\contentsline {paragraph}{Drawing power law species--area relations (Fig. 10.17\hbox {})}{324}} \@writefile{lof}{\contentsline {figure}{\numberline {10.18}{\ignorespaces Fitted power law species--area relations.}}{325}} \newlabel{fig:sarsfit}{{10.18}{325}} \@writefile{toc}{\contentsline {paragraph}{Fitting a species--area relation (Fig. 10.18\hbox {})}{325}} \citation{Preston:1960uq,Preston1962} \citation{MacArthur1963} \citation{MacArthur1967} \citation{Bell2001,Harte:2008nq,Hubbell2001} \@writefile{toc}{\contentsline {paragraph}{Assessing species--area relations}{326}} \@writefile{toc}{\contentsline {subsubsection}{Island biogeography}{326}} \citation{Brown1995,Hubbell2001,Leibold:2004fe} \citation{MacArthur1963} \newlabel{eq:deltaR}{{10.21}{327}} \@writefile{toc}{\contentsline {subsubsection}{Drawing immigration and extinction curves}{327}} \@writefile{lof}{\contentsline {figure}{\numberline {10.19}{\ignorespaces Immigration and extinction curves for the theory of island biogeography. The declining curves represent immigration rates as functions of the number of species present on an island. The increasing curves represent extinction rates, also as functions of island richness. See text for discussion of the heights of these curves, i.e., controls on these rates. Here the dashed lines represent an island that is shrinking in size.}}{328}} \newlabel{fig:IE}{{10.19}{328}} \citation{Crist:2006lr} \@writefile{toc}{\contentsline {subsection}{\numberline {10.5.3}Partitioning species--area relations}{330}} \newlabel{eq:partSAR}{{10.25}{330}} \newlabel{eq:partfull}{{10.26}{330}} \@writefile{lof}{\contentsline {figure}{\numberline {10.20}{\ignorespaces Combining species--area relations with additive diversity partitioning. Forest fragment area explains relatively little of the diversity which accumulates in isolated patches distributed in space. However, it is likely that area associated with the collection of samples (i.e., the distances among fragments) contributes to $\beta _{eco}$ and $\beta _{geo}$.}}{331}} \newlabel{fig:SARpart}{{10.20}{331}} \@writefile{toc}{\contentsline {section}{\numberline {10.6}Summary}{332}} \@writefile{toc}{\contentsline {section}{Problems}{332}} \@writefile{lot}{\contentsline {table}{\numberline {10.3}{\ignorespaces Hypothetical data for Problem 1.}}{332}} \newlabel{tab:prob1}{{10.3}{332}} \@setckpt{Chap10/Chapter10}{ \setcounter{page}{334} \setcounter{equation}{26} \setcounter{enumi}{2} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{21} \setcounter{mpfootnote}{0} \setcounter{part}{3} \setcounter{section}{6} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{20} \setcounter{table}{3} \setcounter{chapter}{10} \setcounter{theorem}{0} \setcounter{prob}{5} \setcounter{merk}{0} \setcounter{pp@next@reset}{0} \setcounter{parentequation}{0} \setcounter{float@type}{4} \setcounter{KVtest}{0} \setcounter{subfigure}{0} \setcounter{subfigure@save}{2} \setcounter{lofdepth}{1} \setcounter{subtable}{0} \setcounter{subtable@save}{0} \setcounter{lotdepth}{1} \setcounter{FancyVerbLine}{4} }