\relax \citation{Collins:1991fk} \citation{Collins:1991fk} \citation{Collins:1991fk} \citation{Hanski1982} \@writefile{toc}{\contentsline {chapter}{\numberline {4}Populations in Space}{111}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{cha:metapopulations}{{4}{111}} \@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces A frequency distribution of the number of plant species ($y$-axis) that occupy different numbers of grassland remnants ($x$-axis). Note the \textsf {U}-shaped (bimodal) distribution of the number of sites occupied. Other years were similar \cite {Collins:1991fk}}}{111}} \newlabel{fig:CandG}{{4.1}{111}} \citation{Pulliam:1988ez} \@writefile{toc}{\contentsline {section}{\numberline {4.1}Source-sink Dynamics}{112}} \@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces The simplest source-sink model.}}{112}} \@writefile{toc}{\contentsline {paragraph}{The concept}{112}} \citation{Berry:2008} \citation{Pulliam:1988ez} \@writefile{toc}{\contentsline {paragraph}{The equations}{113}} \newlabel{eq:ss1}{{4.1}{113}} \newlabel{eq:ss2}{{4.2}{113}} \@writefile{toc}{\contentsline {paragraph}{A result}{113}} \@writefile{toc}{\contentsline {paragraph}{A model}{113}} \newlabel{SSBerry}{{4.3}{113}} \citation{Lehman1997,Leibold:2004fe,Loreau:2003hb} \newlabel{SSPulliam}{{4.4}{114}} \@writefile{toc}{\contentsline {paragraph}{The spatial demographic Pulliam-like model}{114}} \@writefile{toc}{\contentsline {section}{\numberline {4.2}Two Types of Metapopulations}{114}} \citation{Levins1969} \@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces The declining \emph {relative} abundance in the high quality habitat in a source-sink model. The proportion of the total population ($n_1/(n_1+n_2)$) in the \emph {source} population may decline with increasing habitat quality and growth rate $\lambda _1$ habitat.}}{115}} \newlabel{fig:ssP}{{4.3}{115}} \@writefile{toc}{\contentsline {paragraph}{A single spatially structured population}{115}} \@writefile{toc}{\contentsline {paragraph}{A metapopulation}{115}} \newlabel{closed}{{4.4a}{116}} \newlabel{sub@closed}{{(a)}{a}} \newlabel{open}{{4.4b}{116}} \newlabel{sub@open}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Collections of sites. \subref {closed} Sites may be recolonized via internal propagule production and dispersal only, or \subref {open} sites may receive immigrants from an outside source that is not influenced by the collection. Each site (A-F) may be a spot of ground potentially occupied by a single plant, or it may be an oceanic island potentially occupied by a butterfly population. Sites may also be colonized via both internal and external sources.}}{116}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {A closed collection}}}{116}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {An open collection}}}{116}} \newlabel{fig:metpop}{{4.4}{116}} \citation{Gotelli1993,Gotelli1991} \citation{Levins1969} \citation{Tilman1994} \@writefile{toc}{\contentsline {section}{\numberline {4.3}Related Models}{117}} \newlabel{eq:4}{{4.5}{117}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}The classic Levins model}{117}} \newlabel{eq:intcol}{{4.6}{117}} \citation{Gotelli1991} \@writefile{toc}{\contentsline {paragraph}{The Levins metapopulation model (Fig. 4.5a\hbox {})}{118}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Propagule rain}{118}} \newlabel{eq:proprain}{{4.7}{118}} \newlabel{fig:levins}{{4.5a}{119}} \newlabel{sub@fig:levins}{{(a)}{a}} \newlabel{fig:IMH}{{4.5b}{119}} \newlabel{sub@fig:IMH}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Three metapopulation models, using similar parameters ($c_i=0.15$, $c_e=0.15$, $e=0.05$).}}{119}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Levins}}}{119}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Propagule Rain and Hanski}}}{119}} \@writefile{toc}{\contentsline {paragraph}{The propagule rain metapopulation model (Fig. 4.5b\hbox {})}{119}} \citation{Brown1977a} \citation{MacArthur1963} \citation{Gotelli1993} \citation{Hanski1982} \newlabel{eq:genmod}{{4.10}{120}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}The rescue effect and the core-satellite model}{120}} \newlabel{eq:reseff}{{4.12}{120}} \newlabel{eq:CoreSat1}{{4.13}{120}} \@writefile{toc}{\contentsline {paragraph}{The core-satellite metapopulation model}{121}} \@writefile{toc}{\contentsline {paragraph}{Graphing propagule rain and core-satellite models (Fig. 4.5b\hbox {})}{121}} \@writefile{toc}{\contentsline {subsubsection}{Core-satellite equilibria}{121}} \newlabel{eq:CoreSat2}{{4.14}{121}} \newlabel{eq:CoreSatPD1}{{4.15}{122}} \newlabel{eq:CoreSatPD2}{{4.16}{122}} \citation{Roughgarden1998} \@writefile{toc}{\contentsline {paragraph}{An equilibrium for the core-satellite metapopulation model (Fig. 4.6\hbox {})}{123}} \@writefile{toc}{\contentsline {subsubsection}{Levins $vs$. Hanski}{123}} \newlabel{eq:7}{{4.17}{123}} \newlabel{eq:8hanski}{{4.18}{123}} \@writefile{toc}{\contentsline {section}{\numberline {4.4}Parallels with Logistic Growth}{123}} \@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Metapopulation growth rate as a function of $p$, in the core-satellite model ($c_i=0.15$, $e=0.05$). When we plot population growth rate for the core-satellite model, for arbitrary parameter values where $c_i>e$, we see that growth rate falls to zero at full occupancy (i.e., at $p^*=1$). We also see that the slope is negative, indicating that this equilibrium is stable.}}{124}} \newlabel{fig:hanski}{{4.6}{124}} \citation{Kareiva:1995kx,Nee:1992vn,Tilman1994} \citation{Lande:1987uq,Lande:1988ad} \citation{Kareiva:1995kx} \newlabel{eq:5}{{4.20}{125}} \newlabel{eq:6}{{4.24}{125}} \@writefile{toc}{\contentsline {section}{\numberline {4.5}Habitat Destruction}{125}} \newlabel{eq:D}{{4.27}{125}} \@writefile{toc}{\contentsline {paragraph}{Habitat destruction model }{125}} \@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Metapopulation dynamics, combining the Levins model and habitat destruction ($c_i=0.15$, $e=0.05$).}}{126}} \newlabel{fig:lande}{{4.7}{126}} \@writefile{toc}{\contentsline {paragraph}{Illustrating the effects of habitat destruction (Fig. 4.7\hbox {})}{126}} \newlabel{eq:Deq}{{4.28}{126}} \citation{Tilman1994} \@writefile{toc}{\contentsline {paragraph}{A core-satellite habitat loss scenario}{127}} \citation{Hanski1982} \citation{Collins:1991fk} \@writefile{toc}{\contentsline {paragraph}{The unexpected collapse of core populations}{128}} \@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Metapopulation dynamics, starting from near equilibrium for $c_i=0.20$ and $e=0.01$. If the environment changes, causing extinction rate to increase until it is greater than colonization rate, we may observe greatly delayed, but inevitable, extinction (e.g., $c_i=0.20, e=0.25$).}}{128}} \newlabel{fig:lande2}{{4.8}{128}} \@writefile{toc}{\contentsline {section}{\numberline {4.6}Core-Satellite Simulations}{128}} \@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Core-satellite species dynamics with stochasticity ($\mathaccentV {bar}016{i}=\mathaccentV {bar}016{e}=0.2$).}}{130}} \newlabel{fig:cssim10}{{4.9}{130}} \citation{Collins:1991fk} \newlabel{cs}{{4.10a}{131}} \newlabel{sub@cs}{{(a)}{a}} \newlabel{lev}{{4.10b}{131}} \newlabel{sub@lev}{{(b)}{b}} \@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces The species-abundance distribution resulting from dynamics for 50 independent metapopulations with internal colonization. \subref {cs} includes the rescue effect (Hanski's model), and note that most species are either common ($p>0.8$) or rare ($p<0.2$). Levins model \subref {lev} does not include the rescue effect, and there are very few core species ($p>0.8$).}}{131}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {With Rescue Effect}}}{131}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {No rescue effect}}}{131}} \newlabel{fig:cssimhist}{{4.10}{131}} \@writefile{toc}{\contentsline {section}{\numberline {4.7}Summary}{132}} \@writefile{toc}{\contentsline {section}{Problems}{132}} \@setckpt{Chap04/Chapter04}{ \setcounter{page}{133} \setcounter{equation}{29} \setcounter{enumi}{3} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{2} \setcounter{mpfootnote}{0} \setcounter{part}{1} \setcounter{section}{7} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{10} \setcounter{table}{0} \setcounter{chapter}{4} \setcounter{theorem}{0} \setcounter{prob}{2} \setcounter{merk}{0} \setcounter{pp@next@reset}{0} \setcounter{parentequation}{0} \setcounter{float@type}{4} \setcounter{KVtest}{0} \setcounter{subfigure}{0} \setcounter{subfigure@save}{2} \setcounter{lofdepth}{1} \setcounter{subtable}{0} \setcounter{subtable@save}{0} \setcounter{lotdepth}{1} \setcounter{FancyVerbLine}{3} }