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Sensitive detection of radiation trapping in cold-atom clouds
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In this paper, we calculate the effect of radiation trapping on the photon statistics of the light scattered from
optical molasses. We propose that an intensity correlation function measurement may be sensitive to the
presence of radiation trapping at an on-resonance optical depth as low as 0.1, more than an order of magnitude
less than where effects of multiple scattering in cold-atom clouds have been previously observed@T. Walker, D.
Sesko, and C. Wieman, Phys. Rev. Lett.64, 408~1990!; D. Sesko, T. Walker, and C. Wieman, J. Opt. Soc. Am.
B. 8, 946 ~1991!#.
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I. INTRODUCTION

Radiation trapping in atomic vapors refers to the re
sorption of spontaneously emitted photons, and has b
studied extensively in atomic spectroscopy, astrophysics,
plasmas@1#. In the context of cold atoms, radiation trappin
@2# was recognized as being principally responsible for p
venting trapped atomic samples from becoming colder@3#
and denser@4#. This is because an atom, upon absorbin
spontaneously emitted photon by a neighbor, experienc
momentum kick away from the emitter. In Ref.@1#, the pres-
ence of radiation trapping induced abrupt changes in
cloud shape under certain conditions. These changes be
observable only at number densities of 1010–1011/cm3 and
an optical depth~for an on-resonant probe! of 3. More re-
cently, interest in radiation trapping has been revived in
context of electromagnetically induced transparency@5#. In a
coherently prepared atomic sample, although the numbe
atoms undergoing spontaneous emission are relatively
these spontaneous photons incoherently pump nearby at
destroying atomic coherence@6#. In Ref.@5#, a laser field was
used to create a coherent superposition of ground-state
man sublevels. At densities above 531010/cm3, the presence
of radiation trapping was found to increase the decay rat
the Zeeman coherence.

In the context of laser-cooled atoms, a rather direct wa
sensitively explore radiation trapping is to investigate
photon statistics of scattered light. Previous works ha
noted the importance of the frequency spectrum of the s
tered light in determining the strength of repulsive radiat
trapping forces@1#, and in calculating the heating of the a
oms owing to radiation trapping@3,7#. Further, some workers
speculate that they may have seen some preliminary
dence of the effect of radiation trapping on the two-tim
intensity correlation function̂I (t)I (t1t)& @8#. However, in
Ref. @8#, no attempt was made to include multiple scatter
in the theory.

In this paper, we calculate the two-time intensity corre
tion function for the light scattered from optical molasse
incorporating a simple model of radiation trapping. In o
model, the atoms are approximated as simple two-level
tems being coherently pumped by a near-resonant laser b
that transfers some population to the excited state. The
herent pump is chosen as weak to describe the typical s
1050-2947/2003/68~1!/013411~6!/$20.00 68 0134
-
en
nd

-

a
a

e
me

e

of
w,

s,

e-

of

o
e
e
t-

i-

g

-
,
r
s-
am
o-
a-

tion in optical molasses where the combined optical powe
the multiple trapping laser beams is usually of the order
the saturation intensity, meaning that the excited state f
tion seldom exceeds 10%. According to our model, besi
coherent excitation by the laser, the atoms experience in
herent pumping by a thermal photon reservoir formed by
spontaneous emission from other atoms@5# in the trap. The
spontaneously emitted photons are dephased and depola
with respect to the coherent pumping field. In contrast
Ref. @5#, Doppler broadening is included in our model, how
ever, line broadening owing to the Raman transitions t
would occur in real multilevel atoms is ignored@8,9#. A
simple expression for the degree of second-order cohere
of the scattered light is obtained, in which the contributi
from reabsorption of spontaneous emission is clearly d
played. We find that the coherence properties of the scatt
light are sensitive to radiation trapping even for number d
sities around 108–109/cm3 and optical depths as low as 0.

Section II describes the simple physical model we use
describing radiation trapping in terms of the probability
reabsorption in the sample of a photon emitted by an at
and how the reabsorption of fluorescent light is related to
optical depth of the atom sample. In Sec. III, we calculate
intensity correlation function for the light scattered from co
moving atoms, including the effects of radiation trapping.
Sec. III D, we plot and discuss our results.

II. PHYSICAL MODEL OF RADIATION TRAPPING IN
ATOMIC SAMPLES

Let us assume a uniform spherical distribution~diameter
l ) of two-level atoms~ground stateug&, excited stateue&)
with number densityn as shown in Fig. 1. Suppose a res
nant photon starts at one end and traverses through
sample. The probability that this photon is absorbed by
atom is simplyns l ~providedns l !1), wheres is the on-
resonance absorption cross section.ns l is actually the num-
ber of ‘‘collisions’’ suffered by a particle moving through
collection of targets with number densityn, and in the con-
text of the absorption of light in matter is also known as t
optical depthbecause it describes the exponential attenua
experienced by a light beam propagating through the m
dium ~see, for example, Ref.@10#!.

In the context of a cold-atom cloud, the photon travers
©2003 The American Physical Society11-1
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through the sample could have come from the trapping la
itself, or have been emitted by an atom excited by the t
laser. If we denote the probability of a two-level atom bei
in the excited state owing to laser excitation asree, then
ree5(I /2I s)/(11I /I s14D2/g2) @14#, whereI is the trap la-
ser intensity,I s is the saturation intensity for the transition,D
is the laser detuning from atomic resonance, andg is the
reciprocal of the excited state lifetime. Then,reeg is simply
the number of photons emitted per second by a trapped a
as a result of being illuminated by the trap laser. These p
tons traverse through the cold atom cloud, with probabi
ns l of being reabsorbed~or trapped in a certain sense! in the
cloud. Therefore, the probability that an atom will emit
photon, which will be eventually reabsorbed in the sample
ns lree. If we denote this probability asnth and the number
of reabsorptions/sec per atom asR, then

nth5ns lree,

R5nthg. ~1!

In other words,R is the incoherent pumping rate per ato
due to reabsorption. One may alternatively think of the re
sorbed light as a reservoir of blackbody radiation with me
photon occupation numbernth per mode@5,13#. In our case,
nth!1, hence the above physical interpretation ofnth as a
probability is justified.

A satisfying feature of our simple physical model of r
diation trapping is thatR depends onreeg, implying that
reabsorptions occur only if coherent radiation from the la
is first absorbed by the atoms and then spontaneously e

FIG. 1. Physical model of radiation trapping: An atom in t
uniform cold cloud is depicted being pumped by coherent excita
from the laser as well as by a background of incoherent light. T
origin of the incoherent background is the spontaneous emis
from atoms in the cloud. As explained in the text, the incoher
pumping rateR is given by R5nthg, where nth5probability of
reabsorption of a photon by an atom5~probability some other atom
emits a photon!3~probability that this photon gets absorbed in t
sample!5ree3ns l . See Sec. III for explanation of symbols.
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ted, as should be the case. In the same vein, we see thanth
arises fromree, and is zero if the excited state fraction
zero.

By plugging in typical numbers for optical molasses, w
can see how largens l andnth are expected to be. In the cas
of typical 85Rb molasses, n5108–109/cm3, s52.91
310213m2, l'1 mm, g5(26.63 ns)21, and I'2I s where
I s51.64 mW/cm2. This means thatns l ranges from about
0.01 to 0.2, andnth ranges from about 0.001 to 0.02. Becau
nth!1, it is valid to use the physical picture of radiatio
trapping presented above to analyze typical molasses.
description ofnth as a probability breaks down only whe
the optical depth becomes comparable to~or exceeds!
unity, at that pointns l can no longer be interpreted as
probability.

However, our model remains a crude one because, a
Ref. @5#, we do not take into account the dependence of
radiation trapping on the locations of the atoms, and the
rections in which the spontaneous photons are emitted.
also ignore the frequency dependence of the atomic emis
and the absorption cross section, assuming on-resonant
ues for both. Further, the atom density in the cloud is
uniform as has been assumed here. Hence, a quantitat
accurate prediction ofnth is difficult. Even so, we show be
low that small amounts of radiation trapping are expected
significantly influence the intensity correlations of the lig
scattered from the cloud.

First, we use the optical Bloch equations to calculate
field emitted by a moving atom taking into account the inc
herent pumping by radiation from other atoms in the clou
We then apply the quantum regression theorem to const
the two-time correlation function for the field radiated by th
atom.

III. LIGHT SCATTERED BY THE MOVING ATOM IN THE
PRESENCE OF RADIATION TRAPPING

Since we are interested in measuring the intensity co
lations of the light scattered from optical molasses, we fi
specify the two-time correlation function that needs to
evaluated.

A. Intensity correlation function for the scattered light

The degree of second-order temporal coherenceg(2)(t) of
a polarized light wave of intensityI emitted by a spatially
coherent thermal source is given by@11,12#

g(2)~t![
^ Î ~ t ! Î ~ t1t!&

^ Î ~ t !&2
511ug(1)~t!u2, ~2!

where g(1)(t)[^Ê(t)•Ê* (t1t)&/^ Î (t)& is the degree of
first-order coherence and, by the Weiner-Khintchine theor
is the Fourier transform of the frequency spectrum of

light wave.EŴ (rW,t), the operator for the field radiated by th

atomic dipole, is given byEŴ (rW,t)5KW (rW)ŝ1(t), where
KW (rW)5(v2/4pe0c2)(dW /r 2(dW •rW)rW/r 3) is the usual spatial di-
pole pattern at pointrW radiated by an electric dipoledW oscil-
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SENSITIVE DETECTION OF RADIATION TRAPPING . . . PHYSICAL REVIEW A68, 013411 ~2003!
lating at frequencyv, and ŝ6(t) are standard notations fo
the atomic raising and lowering dipole operators@11,13# in
the Heisenberg picture~at t50, ŝ1[ue&^gu and ŝ2

[ug&^eu). The spatial dependence of the electric field ca
cels out in the above expression forg(1)(t), and we obtain

g(1)~t!5
^ŝ1~ t !ŝ2~ t1t!&ss

^ŝ1~ t !ŝ2~ t !&ss

, ~3!

where the subscriptss denotes the steady state.
Note that Eq.~2! is true only for a collection of radiator

that radiate independently of each other, as is the case
chaotic source. In the absence of radiation trapping,
trapped atoms certainly act like independent radiators
Eq. ~2! is valid. However, once the atoms start absorb
photons emitted by other atoms, we can no longer treat th
as independent radiators. Nevertheless, we feel justifie
using Eq.~2! to describe radiation trapping because in o
model each atom interacts with a reservoir of incoher
photons, not with other atoms directly. While it is true th
the reservoir exists only because of the spontaneous emis
from all the atoms in the cloud, we may still think of eac
atom being pumped separately by a coherent source~the la-
ser! and an incoherent source~the reservoir!. As such each
atom emits in response to this excitation independently of
other atoms. At any rate, the coupling between the ato
through reabsorption events is very weak in the case of
tical molasses owing to the weak laser excitation and
atomic number densities.

Therefore, our task reduces to finding expectation val
of single-time and two-timeŝ operators. We now evaluat
these atomic dipole correlation functions, taking into acco
the motion of the atom, with the help of the optical Bloc
equations.

B. The optical Bloch equations for the moving atom

We assume the interaction energy of the atomic dipoldW

with the incident light fieldEW to be2dW •EW. If the excitation
laser is a single beam propagating in the1z direction, and a
stationary atom is located at the origin, then the field incid
on the atom isEW(5 1

2 eW E0 e2 ivt1c.c.). However, if the atom
at the origin is moving with velocityvW , then the electric field
at the atom is 1

2 eW E0 e2 i (kW•vW t2vt)1cc. If we define the
Rabi frequency V as usual for a stationary atom
V[dW eg•eW /\E0, wheredW eg is the dipole matrix element be
tween the ground and excited states, then for an atom loc
at the origin but moving with velocityvW the Rabi frequency
can be written asVe2 ikW•vW t. In the following, we include the
effect of atomic motion on the interaction of the atom w
the laser beam, but do not take into account the effec
atomic motion on the interaction of the atom with trapp
photons.

In order to calculate the two-time correlation function, w
start by writing down the optical Bloch equations for th
atomic populations and coherence of the moving atom:
01341
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ṙee52~nth11!gree1nthgrgg2S i

2
Ve2 ikW•vW treg* 1c.c.D

52 ṙgg

ṙeg52S nth1
1

2Dgreg2 iDreg2
i

2
Ve2 ikW•vW t~ree2rgg!

5 ṙge* , ~4!

where, in usual notation~see, for instance, Ref.@14#!, rgg
andree are the atomic populations in the ground and exci
states, respectively, andreg describes the complex amplitud
of the induced atomic dipole. As usual@11#, reg andreg* are
related to the expectation values of the raising and lower
atomic ŝ6 dipole operators as follows:reg[^ŝ2&eivt and
reg* [^ŝ1&e2 ivt. Thus, the action of the raising operatorŝ1

~lowering operatorŝ2) on the ground stateug& yields the
excited stateue& ~0!, and on the excited stateue& yields 0
~ground stateug&). Also, as usual,ree5^see& and rgg
5^sgg& ~at t50, see5ue&^eu and sgg5ug&^gu). The sym-
bols g and D represent, respectively, the radiative dec
rates from the excited state and the laser detuning (D[veg
2v, whereveg is the atomic resonance frequency andv is
the driving laser frequency! from atomic resonance. A physi
cal explanation ofnth in terms of the probability of reabsorp
tion of a fluorescent photon is given in the preceding secti
One can see from Eq.~4! that the role ofnth is to ~a! inco-
herently pump atoms out fromug& to ue& causing an increase
in the radiative decay rate from the excited state, and~b!
cause an increase in the decay rate of the dipole cohere

From Eqs.~4!, it is straightforward to obtain the following
solution for the dipole coherencereg(t)[^ŝ2(t)&eivt:

^ŝ2~ t !&eivt5^ŝ2~ t8!&eivt8e2(g8/21 iD)(t2t8)

2
i

2
Ve2(g8t/21 iD)tE

t8

t

dt9@ree~ t9!

2rgg~ t9!#e(g8/21 iD)t9e2 ikW•vW t9
, ~5!

whereg8[(2nth11)g andt8 is the initial time for our mea-
surement. For a weak laser excitation, as in optical molas
we may assume thatree(t9)2rgg(t9) in the integrand in Eq.
~5! does not vary much during the time intervalt8–t @13#,
and hence can be replaced byree(t8)2rgg(t8) and pulled
out of the integral. We then obtain

^ŝ2~ t !&eivt5^ŝ2~ t8!&eivt8e2(g8/21 iD)(t2t8)

2
iV

2~g8/21 iD8!
@ree~ t8!2rgg~ t8!#

3e2 ikW•vW t~12e2(g8/21 iD8)(t2t8)!, ~6!
1-3
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whereD8[D2kW•vW . It is clear that the expectation value o
the dipole operatorŝ2 at a later timet1t ~wheret>0) can
simply be written in terms of̂ ŝ2(t)& by allowing t→t1t
and t8→t in Eq. ~6!.

We now apply the quantum regression theorem@11,13# to
calculate the expectation value of the two-time atomic dip
correlationŝ1(t)ŝ2(t1t) in terms of the single-time op
erators given by Eq. 6. We obtain

^ŝ1~ t !ŝ2~ t1t!&eivt

5ree~ t !e2(g8/21 iD)t1
iV

2~g8/21 iD8!

3r* eg~ t !e2 ikW•vW (t1t)~12e2(g8/21 iD8)t!, ~7!

where we have used̂ŝ1(t)ŝee(t)&50 ~becausê gue&50)
and ^ŝ1(t)ŝgg(t)&5^ŝ1(t)& ~becausêgug&51).

In the steady state (t→`), we simply replaceree(t) and
reg(t) in Eq. ~7! with their steady-state valuesree

ss and reg
ss

which are readily found from Eqs.~4! by settingṙee andṙeg
equal to zero. Substituting these steady-state values forree
andreg in Eq. ~7!, we obtain

^ŝ1~ t !ŝ2~ t1t!&ss5
g

g8
nthe2(g8/21 iveg)t

1

g

g8
uVu2

4D821g8212uVu2
e2 ikW•vW te2 ivt.

~8!

We need to perform an average over the Maxwe
Boltzmann distribution of velocities in the cold-atom clou
The first term on the right-hand side of Eq.~8! has no veloc-
ity dependence and remains unchanged. The velocity ave
of the second term is easily evaluated if we make the follo
ing two crude approximations.

~1! We ignore the velocity dependence ofD8 in the de-
nominator, i.e., we putD8'D. This is roughly justified be-
cause while typical values ofD for optical molasses rang
from one to several linewidths below resonance, the ma
tude ofkv is just a fraction of the linewidth. For example,
the case of85Rb, the linewidth isg/2p'6 MHz, and for
molasses at a temperature ofT550 mK we can estimate
kv'(2p/l)A3kBT/m ~where l5780 nm, m is the mass
number andkB is the Boltzmann’s constant! to be about 0.7
MHz.

~2! We replace kW•vW in the exponential with simply
2kv. This, again, is roughly justified because the domin
contribution to the radiated field comes from atoms t
counterpropagate relative to the red-detuned laser beam
are Doppler-shifted closest to resonance. Even though, in
paper, we only consider one laser beam, real molasses
cally have multiple laser beams irradiating the atomic sam
01341
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from multiple directions. This means that no matter in whi
direction a trapped atom may be moving, it will likely b
counterpropagating with respect to one of the laser be
and therefore be predominantly interacting with that beam

Using the above two approximations, we have^eikvt&v
5exp(2k2t2kBT/2m). Therefore, we finally obtain the fol
lowing expression for the steady-state value of^ŝ1(t)ŝ2(t
1t)& which, from Eq.~3!, is also the numerator ofg(1)(t):

^ŝ1~ t !ŝ2~ t1t!&ss5
g

g8
Fnthe2g8t/2e2 ivegt

1rss
ee,0expS 2k2t2

kBT

2m De2 ivtG ,
~9!

where rss
ee,0[uVu2/(4D21g8212uVu2). Note that if the

factorg82 in the denominator had instead been justg2, then
rss

ee,0 would be nothing but the usual expression for t
excited state fraction of a coherently excited two-level at
in the absenceof radiation trapping.

Substituting Eq.~9! in Eq. ~3!, and using Eq.~2!, we now
have the expressions for the first- and second-order co
ences of the light scattered from optical molasses, includ
the effect of radiation trapping. We present the implication
these results in the following section.

C. First- and second-order coherences for the light scattered
from a moving atom in the presence of radiation

trapping

Equation ~9! has an intuitively appealing justification
Keeping in mind that the Fourier transform ofg(1)(t) is the
frequency spectrum, we see thatg(1)(t) has two terms; one
oscillating at the atomic resonance frequency and the othe
the driving frequency. Now, the emission spectrum, for
detuned excitation of strength such thatuVu;g or I;I s , has
two contributions@15#: ~a! an elastic contribution, with a
linewidth equal to that of the laser, centered at the laser
quencyv; ~b! a three-peaked inelastic contribution, compr
ing a central peak atv and two side peaks located approx
mately at the atomic resonant frequencyveg and 2v2veg,
respectively@15#, with linewidths comparable to the natura
atomic linewidth. Note that the inelastic peak atv is much
smaller than the elastic contribution for weak excitatio
while the emission at 2v2veg is much less likely than the
veg light to be reabsorbed in the cloud owing to the decre
of the absorption cross sections~v! with detuning. There-
fore, in a crude sense, we may ignore the inelastic contr
tion at frequencies other than atveg. Hence, we find that the
first term in Eq.~9!, which depends onnth and arises solely
from the contribution of radiation trapping tog(1)(t), is cen-
tered at the atomic resonance frequencyveg . The second
term describes the contribution tog(1)(t) from atomic emis-
sion arising predominantly from laser excitation~note, how-
ever, the dependence of this term onnth throughg8 in the
denominator as mentioned earlier! and is hence located at th
1-4
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SENSITIVE DETECTION OF RADIATION TRAPPING . . . PHYSICAL REVIEW A68, 013411 ~2003!
laser frequencyv. This paragraph agrees with our previo
remarks made just after Eqs.~2! and ~3!: we have modeled
the atoms as weakly excited independent radiators that
being pumped separately by a coherent source atv and by an
incoherent background reservoir comprising fluorescent p
tons atveg .

From Eqs.~9! and ~3!, we have

g(1)~t!

5
nthe2g8t/2e2 ivegt1rss

ee,0exp~2k2t2kBT/2m!e2 ivt

nth1rss
ee,0

,

~10!

which, upon substitution in Eq.~2!, yields the final result of
our paper: the degree of second-order temporal coher
g(2)(t) for the light scattered from a moving atom in th
presence of radiation trapping. We obtain

g(2)~t!511
1

~nth1rss
ee,0!2

@rss2
ee,0e

2k2t2kBT/m1nth
2 e2g8t

12nthrss
ee,0e

2g8t/2e2k2t2kBT/2mcosDt#. ~11!

It is clear that becausenth!1, the dominant contribution
from radiation trapping tog(2)(t) comes from the first term
Note that in the absence of radiation trapping the two te
that depend explcitly onnth vanish, and we have simpl
g(2)(t)511exp(2k2kBT/m). In the presence of radiaito
trapping the prefactor for the exponential term is no lon
unity, and depends onnth, as seen from Eq.~11! and from the
definition of rss

ee0 given just after Eq.~9!.

D. Results and Discussion

In Fig. 2, we plot the dominant first term contribution

FIG. 2. The intensity correlation functiong(2)(t) for nth

50, 0.01, and 0.02. The main plot shows just the contribution fr
the dominant first term in Eq.~11!. The inset shows an expande
view of contributions at short time delays from the much sma
second and third terms in Eq.~11! to the correlation fornth50.02.
01341
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g(2)(t) @see Eq.~11!# as a function of the delayt for three
different values ofnth . The much smaller contributions from
the remaining two terms in Eq.~11! are shown in the inset
We have used typical numbers for optical molasses of85Rb
atoms:T550 mK, I /I s52, D/g52. For the topmost plot,
we putnth50, i.e., we assume the density of trapped ato
to be so low that there is no radiation trapping. For t
middle and lowest plots, we putnth50.01 andnth50.02,
respectively, which from the definition of optical depth
Sec. III and from Eq.~1! correspond to an optical depth
number density of the cold atom cloud of about@0.15,
109/cm3] and about@0.3, 23109/cm3], respectively.

Note that if we add the contributions from all three term
in Eq. ~11! we will obtain curves forg(2)(t) that always start
from 2 at zero delay and fall to 1 for long delays, as w
would expect for radiation from a collection of independe
radiators@12#. However, for atomic samples of size larg
than an optical wavelength one may expect the cosine o
lation to wash out owing to a random phase difference~cor-
responding to the random locations of atoms in the clo!
appearing between the incoherent and coherent pum
terms in Eq.~10!. Of course, the smallnth

2 term still survives:
an exponential that damps on a time scale determined es
tially by the photon scattering rate. This appears as a sm
narrow peak superimposed on top of the main broad p
contributed by the~rss

ee,0)
2 term which is an exponentia

with a width determined by the temperature of the ato
sample. Thus, as radiation trapping increases one basi
expects to measure a decrease in the coherence of the
tered light as shown in the main plots in Fig. 2.

In Ref. @8#, it was shown that when effects of radiatio
trapping are absent, as in the topmost plot in Fig. 2, the wi
of theg(2) curve is determined by the Doppler broadening
the cold atom sample and therefore yieldsin situ, noninva-
sive information about the temperature of the cloud. In t
work, the data suggested that the possible presence of ra
tion trapping may modify the intensity correlation functio
without measurably affecting the temperature of the sam
~as measured by a standard time-of-flight technique!. It is
evident from the calculations here that small amounts of
diation trapping at moderate densities may cause substa
changes to the intensity correlation function. Note that
on-resonance optical depth of the atom sample in our ca
lations (;0.15–0.3) is significantly lower than the optic
depth used in earlier investigations of radiation trapping
cold-atom clouds@1#.

IV. CONCLUSION

We have shown that the intensity correlation functi
g(2)(t) for the light scattered from optical molasses is e
tremely sensitive to the presence of radiation trapping.
have developed a physical, though admittedly rather cru
model of radiation trapping in optical molasses. The mo
incorporates into the optical Bloch equations the probabi
of reabsorption of photons emitted by the trapped atoms
the parameternth @see Eq.~1!#. Our model includes the mo
tion of the atoms in the laser-atom interaction but not in
interaction of the atoms with the trapped photons. While
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full theory of radiation trapping in optical molasses is rath
difficult, our simple model enables us to predict that the
should be substantial changes ing(2)(t) even at optical
depths over an order of magnitude lower than where effe
of radiation trapping in cold atoms were previously report
This model may also be useful for analyzing the coher
backscattering cone of light from cold-atom clouds@16#.
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