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Summary. Permutation tests based ondistances among multivariate observations have found many applications in the bi-
ological sciences. Two major testing frameworks of this kind are multiresponse permutation procedures and pseudo-F tests
arising from a distance-based extension of multivariate analysis of variance. In this article, we derive conditions under which
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set and by a novel application to functional magnetic resonance imaging data.
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1. Introduction
In a variety of scientific settings, researchers are interested in
comparing two or more groups in terms of multivariate out-
comes for which standard multivariate analysis of variance
(MANOVA) methodology is inappropriate. Possible reasons
for the inapplicability of MANOVA include nonnormal obser-
vations, heterogeneous dispersion matrices, missing data, or
a greater number of variables than observations (Gower and
Krzanowski, 1999). One way to proceed in such settings is to
deploy methods whose starting point is not the observations
themselves, but the distances among them.

In this article, we focus on two such approaches, both of
which proceed by constructing a test statistic based on the
interpoint distances and comparing it to a permutation distri-
bution. The first approach, multiresponse permutation proce-
dures (MRPP) (Mielke, Berry, and Johnson, 1976; Mielke and
Berry, 2007) uses a (weighted) average within-group distance
as the test statistic (cf. Good, 1982; Smith, Pontasch, and
Cairns, 1990). The second approach, originating in the field
of ecology and sometimes called permutational MANOVA,
was introduced by McArdle and Anderson (2001) and Ander-
son (2001, 2005). They described a method for partitioning
variation inherent in dissimilarity or distance matrices, and
defined a “pseudo-F” statistic analogous to the usual uni-
variate F statistic for testing individual terms in ANOVA
or more general linear models. This inferential approach has
been applied recently in the genetics literature as well (Wes-
sel and Schork, 2006; Zapala and Schork, 2006; Nievergelt,
Libiger, and Schork, 2007). Such a partitioning is formulated
elsewhere as “analysis of distance” (Gower and Krzanowski,

1999; Krzanowski, 2002, 2006), although the latter work aims
primarily to develop graphical and other descriptive method-
ology as opposed to significance tests.

Permutation tests based on both MRPP and the pseudo-
F statistic are implemented in the R package vegan (Oksanen
et al., 2008) for quantitative ecology. Each approach has found
many applications in that discipline. However, the theoretical
relationship between the MRPP and pseudo-F statistics is not
well understood. This article seeks to provide some insight
into this relationship. We derive conditions, pertaining to the
distance function and/or to the design, under which the two
test procedures are in fact equivalent.

This article makes three main contributions. First, we
present an algebraic formulation of the pseudo-F statistic
that encompasses testing a full model against either a null
model (as in McArdle and Anderson, 2001) or an intermedi-
ate model. Second, we derive results showing the equivalence
of this statistic and the MRPP statistic in certain fundamen-
tal cases. Third, we illustrate the versatility of these methods
both by re-examining a well-studied ecological data set and
by presenting a novel approach to a high-dimensional, low-
sample-size set of neuroimaging data. An overarching goal of
this article is to unify different lines of work on distance-based
permutation tests, and thereby to help foster the continued
growth of this area of biometric methodology.

2. A Motivating Application: Functional Connectivity
of the Human Brain

Functional MRI records the blood oxygen level dependent
(BOLD) time series, an index of brain activity, at each of
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Figure 1. Mean correlation matrices among 38 brain regions of interest, for the three age groups indicated. The first 24
and last 14 regions belong to two proposed anticorrelated systems known, respectively, as the task-positive and task-negative
networks. The differentiation of these networks can be seen to progress from childhood to adulthood. This figure appears in
color in the electronic version of this article.

a grid of locations in the subject’s brain. Traditional fMRI
studies seek to identify brain regions whose BOLD signal in-
dicates a response to some stimulus. A growing body of work
has instead examined the brain in its “resting state.” By scan-
ning subjects while they attend to no stimulus in particular,
one can investigate which brain regions’ activity levels tend
to vary in tandem, and how the brain is organized into func-
tional networks. A key finding was the identification by Fox
et al. (2005) of two widely distributed brain networks playing
opposite roles: a “task-positive” network showing higher acti-
vation during overt task performance, and a “task-negative”
or “default mode” network more active during rest.

Some recent work (e.g., Fair et al., 2008; Kelly et al., 2009)
has examined how functional networks of this kind mature
from childhood to adulthood. Consider Figure 1, which dis-
plays resting-state correlation matrices among 38 regions of
interest (ROIs) from Toro, Fox, and Paus (2008), averaged,
respectively, over 13 child subjects, 13 adolescents, and 26
adults. Due to the high dimension of the correlation matri-
ces, we employed the shrinkage methodology of Schäfer and
Strimmer (2005) to estimate them. These plots suggest a pro-
gressive differentiation from childhood to adulthood between
the first 24 ROIs, which belong to the task-positive network,
and the last 14, belonging to the default mode network. But
how can we formally test this subjective impression?

One class of approaches is referred to in the neuroimag-
ing literature as “mass-univariate”: essentially one tests for
among-group differences separately at each of the 38 × 38−1

2 =
703 distinct connections between ROIs (using, say, a one-way
ANOVA F-test), and then use some multiple comparisons
method to infer which of these tests yield significant results.
For instance, Fair et al. (2008) employ the false discovery
rate; Section 7.2 below describes a mass-univariate permuta-
tion test procedure. A possible limitation of such methods is
that they can detect only particular connections displaying
unusually large differences among groups. We were interested
in a test sensitive to differences in the overall pattern of con-
nections, which might not be reflected in such large differ-
ences for any particular connection. We therefore turned to
the distance-based procedures considered in this article.

3. Overview of the Two Approaches
The methods discussed here take as their starting point an
n × n symmetric matrix D = (dij )1!i , j!n representing non-
negative distances among n observations. It is assumed that
dii = 0 for each i and that dij > 0 for some i %= j. The n obser-

vations are divided into some sort of a priori groups that, ac-
cording to the null hypothesis, are indistinguishable from each
other. This hypothesis is tested by permutation methods. Let
π denote a permutation of the numbers {1, . . . , n}, i.e., a one-
to-one function from {1, . . . , n} to itself, and let Π be a group
of permutations such that, under the null hypothesis, dπ (i)π (j )
has the same distribution as dij (1 ! i, j ! n) for each π ∈ Π.
The null hypothesis can thus be tested by computing a test
statistic t that depends on the dij ’s, and referring t to the null
distribution of tπ , the corresponding statistic calculated from
the dπ (i)π (j )’s, for π ∈ Π. In practice, this permutation distri-
bution is usually approximated by Monte Carlo simulation.
In some settings, it may be preferable to permute residuals
rather than raw distances (see Legendre and Anderson, 1999;
Anderson and ter Braak, 2003), but (other than the test of
an interaction term in Section 7.2) permutation of residuals
lies beyond the scope of this article.

3.1 MRPP
Suppose the n observations are divided among g a priori
groups G1, . . . ,Gg of size n1, . . . , ng . (More generally one may
include a (g + 1)th “excess” group consisting of “unclassified”
observations, but we will assume this group to be empty.) The
MRPP statistic is given by

δ =
g∑

k=1

Ck
2

nk (nk − 1)

∑

i< j, i ,j∈Gk

∆ij , (1)

where ∆ij denotes a measure of dissimilarity between the ith
and jth observations and C1, . . . , Cg are weights summing to
1. In Mielke and Berry’s work, ∆ij typically equals dv

ij for some
v > 0, most often dij or d2

ij , where dij denotes a metric such as
Euclidean distance. In general these authors advocate taking
∆ij to be a metric rather than a squared metric, based on
robustness considerations and a notion of congruence between
the data and analysis spaces (Mielke, 1986). (Recall that a
distance or dissimilarity function is a metric if, in addition
to the assumptions given at the beginning of Section 3, all
distinct pairs of points have positive distance, and the triangle
inequality holds.) The choice of weights

Ck =
nk − 1
n − g

(2)

is efficient in the sense that it minimizes the asymptotic order
of the permutation distribution’s variance (Mielke and Berry,
2007). The alternative weights
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Ck =
nk (nk − 1)

g∑

m =1

nm (nm − 1)

(3)

reduce (1) to δ = 2∑g

k =1
n k (n k −1)

∑g

k=1

∑
i< j, i ,j∈Gk

∆ij , which

is simply the mean of the within-group differences (cf. Mantel
and Valand, 1970). However, this choice is not efficient in the
above sense.

A point of nomenclature: the terms “distance” and “dis-
similarity” are ordinarily treated as synonyms in multivariate
analysis, but here, to avoid possible confusion between dij

and ∆ij , we will refer to dij as a distance and to ∆ij as a
dissimilarity.

Consider next a randomized block design, in which the n
observations are arranged in g groups and b blocks, with one
observation in each group/block pair. For this setting Mielke
and Iyer (1982) propose a modification of MRPP, the mul-
tivariate randomized block permutation procedure (MRBP)
statistic

δ =
[
g

(
b
2

)]−1 bg∑

i=1

∑

j> i,j∼b i

∆ij , (4)

where j ∼b i means observations j, i are in the same block.
Although the MRPP and MRBP statistics look somewhat dif-
ferent, they are motivated by the same underlying idea: both
statistics represent average within-group differences that, un-
der the alternative hypothesis, should lie in the left tail of the
permutation distribution. Mielke and Berry (2007) extend the
MRPP methodology to more general linear models, but these
are not considered here.

3.2 Pseudo-F Tests
Let A = (− 1

2d
2
ij )1!i ,j!n , and let G = (I − 11T /n)A(I −

11T /n), where 1 is a vector of n 1’s. G is the centered
matrix used in Gower’s (1966) development of principal co-
ordinate analysis. Consider three “partial” design matrices
X 0 = 1, X 1, and X 2, such that for k = 0, 1, 2, X k is an
n × mk matrix of rank mk (<n). Without loss of generality,
for distinct k, l ∈ {0, 1, 2}, XT

k X l = 0m k ×m l
. (Otherwise we

can use the Gram–Schmidt process to obtain modified design
matrices for which this orthogonality does hold.) We can then
consider a nested sequence of design matrices, representing a
null (intercept-only) model, an intermediate model, and a full
model:

1, (1 X 1), X = (1 X 1 X 2).

By definition m0 = 1; m1 may be zero (in which case X 1 is
null), whereas m2 is assumed positive. The dimension of X
is n × m, where m = 1 + m1 + m2. For k = 0, 1, 2, let
H k = X k (XT

k X k )−1XT
k be the hat matrix associated with

X k , i.e., the matrix of projection onto the column space of
X k ; thus H 0 = 11T /n. Similarly let

H = (hij )1!i ,j!n = X(XT X)−1XT = H 0 + H 1 + H 2.

If m1 = 0 then take H 1 = 0. The pseudo-F statistic is then
given by

F ∗ =
tr(H 2GH 2)/m2

tr[(I − H)G(I − H)]/(n − m)
. (5)

See Web Appendix A for further details. F ∗ can be presented
in an analysis of distance table (analogous to an ANOVA ta-
ble) as in McArdle and Anderson (2001) or Anderson (2001).
When m1 = 0, i.e., when testing the full model against the
intercept-only model, (5) reduces to the original expression of
McArdle and Anderson (2001),

F ∗ =
tr(HGH)/(m − 1)

tr[(I − H)G(I − H)]/(n − m)
. (6)

The pseudo-F statistic does not in general have an F-
distribution under the null hypothesis; rather, like the MRPP
and MRBP statistics, it has an unknown null distribution, so
its significance is assessed with a permutation test.

The motivation for the pseudo-F statistic (6), and hence for
(5), can be summarized as follows. Suppose first that D rep-
resents the Euclidean distances among univariate outcomes
y1, . . . , yn . Then F ∗ reduces to the usual F statistic for test-
ing the model regressing these values on a design matrix X
versus the null model, as can be inferred from an elementary
identity relating the sum of squared residuals to the sum of
squared distances (e.g., Legendre and Legendre, 1998, equa-
tions (8.5) and (8.6)). More generally, suppose that D rep-
resents the Euclidean distances among y1, . . . , yn ∈ Rp , for
some p that may be larger than n. Even if D was not origi-
nally formed from the distances among such a set of points, it
can be shown that such points do exist (i.e., D “has the Eu-
clidean property”) if and only if G is positive definite (Mardia,
Kent, and Bibby, 1979); indeed, the principal coordinates of
Gower (1966) provide such a set of points. In this case, if we
performed separate regressions of each component of the yi ’s
with design matrix X , and if Ak , Bk were the numerator and
denominator of the F statistic for the kth component, then
we would have F ∗ =

∑p

k=1 Ak /
∑n

k=1 Bk (Legendre and An-
derson, 1999). Finally, observe that F ∗ can be calculated even
if G is not positive definite (D is not Euclidean). In short, the
pseudo-F statistic is a generalization of the classical F statis-
tic that can be calculated directly from the distance matrix
D, whether or not D is Euclidean. This last property is es-
pecially helpful in the field of ecology, where analyses often
employ non-Euclidean distance measures such that defined by
Bray and Curtis (1957):

d(x, y) =

p∑

k=1

|xk − yk |

p∑

k=1

(xk + yk )

, (7)

where x, y are p-dimensional vectors of nonnegative numbers.
The quantity

tr(H k GHk )
tr(G)

(8)

can be viewed as the proportion of variation explained by
X k (Legendre and Anderson, 1999; McArdle and Anderson,
2001). This expression, like the pseudo-F statistic, can be mo-
tivated as a generalization of the corresponding expression for
ordinary ANOVA, by appealing to a principal coordinates ar-
gument (Gower and Krzanowski, 1999).
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Expression (5) is sufficiently general to encompass the two
simple designs for which we present equivalence results be-
low: the one-way design (see Section 5) and the randomized
complete block design (Section 6). Modifications would be re-
quired for more complex designs involving nested or random
effects or interactions. PERMANOVA+ software (Anderson, Gor-
ley, and Clarke, 2008), an add-on to the PRIMER statistical
package for ecologists (Clarke and Gorley, 2006), implements
pseudo-F tests for ANOVA and other regression models with
general multiway balanced or unbalanced designs.

In order to derive the results below regarding permutation
tests, it will be helpful to define explicit notation for permuta-
tion of distances. If we denote by ei the n-dimensional vector
with 1 in the ith position and 0 elsewhere, then applying per-
mutation π to the distance matrix D means replacing the
latter with

Dπ ≡ (dπ (i)π (j ))1!i ,j!n = Eπ DET
π , (9)

where Eπ = (eπ (1) . . . eπ (n))T . We can similarly define Aπ and
Gπ by replacing D with Dπ in the above, from which we
obtain Aπ = Eπ AET

π and (using the fact that I − 11T /n
commutes with Eπ )

Gπ = Eπ GET
π . (10)

4. Reduction of the Pseudo-F to a Simpler
Test Statistic

In this article, we refer to two permutation tests as equiva-
lent if, whenever both are conducted using the same set of
permuted distance matrices (9), the two tests yield the same
p-value. The following result provides conditions under which
F ∗ is equivalent in this sense to a simpler test statistic. This
equivalence may be of some interest in its own right, and will
be used in Sections 5 and 6 to connect pseudo-F tests with
MRPP and MRBP. Proofs of this result and of those in the
sequel are given in Web Appendix B.

Theorem 1: If

there exists a constant K <
1
2n

n∑

i=1

n∑

j=1

d2
ij

such that tr(H 1Aπ ) = K for all π ∈ Π, (11)

and if

tr(−HAπ ) " 0 for all π ∈ Π, (12)

then a permutation test based on F ∗ (with rejection region in
the right tail of the permutation distribution) is equivalent to a
test based on tr(−HA) (with rejection region in the left tail).

For the m1 = 0 case, we can identify two more trans-
parent conditions—one pertaining to the design, one to the
distance function—either of which implies the conclusion of
Theorem 1.

Proposition 1: If m1 = 0 then the equivalence of Theo-
rem 1 holds

(i) if hij " 0 for all i, j ∈ {1, . . . , n}, or
(ii) if G is positive semidefinite (i.e., D is Euclidean).

The test statistic tr(−HA) = 1
2

∑n

i=1

∑n

j=1 hij d2
ij of

Theorem 1 is a weighted sum of the squared distances,
where the weights depend on the design. Thus, as the next
two sections will show, this test statistic serves as a bridge
from the pseudo-F statistic to the MRPP and MRBP statis-
tics, which are particular weighted sums of dissimilarities
for two simple designs. More generally, the equivalence of
the pseudo-F statistic and tr(−HA) (under the conditions of
Theorem 1) provides some insight into what sort of models
the pseudo-F test treats as “good” models (i.e., models in
favor of which we would reject the null model)—namely,
those for which tr(−HA) is low, or equivalently, for which
hij tends to be large when dij is small. In the context of a
linear model with univariate outcomes y1, . . . , yn , hij can
be interpreted as ∂ ŷ i

∂ y j
or the effect of yj on ŷi . Thus, the

above heuristic criterion for a good model stipulates that
observations that are closer to the ith observation should
have greater impact on the ith fitted value. This is precisely
the idea that underlies local regression methodology (e.g.,
Fan and Gijbels, 1996).

5. Application to One-Way Design
Suppose we wish to test for differences among groups
G1, . . . ,Gg of sizes n1, . . . , ng respectively, and that the n =
n1 + · · ·+ ng rows and columns of H are arranged by these
groups. Then

H =





1n 11
T
n 1

/n1 0 . . . 0
0 1n 21

T
n 2

/n2 . . . 0
... ·

. . .
...

0 . . . 0 1n g 1
T
n g

/ng




,

and thus

tr(−HA) =
g∑

k=1

1
2nk

∑

i ,j∈Gk

d2
ij =

g∑

k=1

1
nk

∑

i< j, i ,j∈Gk

d2
ij .

On the other hand, if we take dissimilarity ∆ij = d2
ij and

weights (2) then

tr(−HA) =
n − g

2
δ. (13)

Since condition (i) of Proposition 1 applies, (13) leads to the
following result.

Proposition 2: A pseudo-F test of the group effect, with
distance dij , is equivalent to an MRPP test with dissimilarity
∆ij = d2

ij and weights Ck = n k −1
n−g .

In Section 7.1, we illustrate how the MRPP with dissim-
ilarity ∆ij %= d2

ij (e.g., ∆ij = dij ) and/or weights other than
those in Proposition 2 can yield different conclusions than the
pseudo-F test.

We remark that Proposition 2 can be proved without ref-
erence to Proposition 1, by combining (13) with Lemma 1 of



640 Biometrics, June 2010

Web Appendix B to express δ as a strictly decreasing function
of F ∗:

δ =

n∑

i=1

n∑

j=1

d2
ij

n [n − g + (g − 1)F ∗]
.

This equality directly generalizes the relationship between δ
and the ordinary F statistic in the setting of one-way ANOVA
(Mielke and Berry, 2007, Section 2.9).

Given a distance dij such as the Bray–Curtis distance (7),
Proposition 1 reveals that the choice between an MRPP with
∆ij = dij (and appropriate weights) and a pseudo-F test is not
really a choice between the two methods—since the former is
the same as a pseudo-F with distance

√
dij , while the latter

is tantamount to an MRPP with squared dissimilarity d2
ij .

Rather, the question reduces to which distance to use for the
pseudo-F (dij or

√
dij ) or equivalently, which dissimilarity for

the MRPP (d2
ij or dij ). The above-cited congruence concept

(Mielke, 1986) would seem to favor the second of either pair
of choices.

6. Application to Randomized Block Design
Recall the notation ∼b of Section 3.1, and similarly write
i ∼g j if observations i, j belong to the same group. For the
randomized block design with X 1 and X 2 representing block
and group effects, respectively, the generic elements of H 1,
H 2, and H are

h(1)
ij =

I(i ∼b j)
g

− 1
bg

, (14)

h(2)
ij =

I(i ∼g j)
b

− 1
bg

, and (15)

hij =
I(i ∼b j)

g
+

I(i ∼g j)
b

− 1
bg

, (16)

respectively. These formulas enable us to prove the following
result.

Proposition 3: If the squared distance function d2
ij is a

metric, then the pseudo-F test is equivalent to the MRBP test
based on squared distances, i.e., with ∆ij = d2

ij .

If the squared distance is a metric then so is the raw dis-
tance, but not conversely. Web Appendix C presents an exam-
ple of a metric distance function whose square is not a metric
and for which the two tests are not equivalent. Proposition 3
could, perhaps, be formulated more naturally by expressing
the distance in terms of the dissimilarity, rather than vice
versa. The result could then be restated as: an MRBP test
for which the dissimilarity ∆ij is a metric equivalent to the
pseudo-F test with distance dij =

√
∆ij .

7. Real Data Illustrations
In this section, we first revisit a previously studied ecologi-
cal data set in light of our equivalence results. We then re-
turn to our motivating application in neuroscience, and show
how distance-based permutation tests offer a novel inferential
approach.

7.1 Ecological Data
For the one-way design, Proposition 2 asserts that the pseudo-
F test with distance dij and the MRPP with dissimilarity
∆ij are equivalent, when ∆ij = d2

ij and the MRPP employs
weights (2). We examine here the effect of removing either
of these conditions, using the Dutch dune meadow vegetation
data set from Jongman, ter Braak, and van Tongeren (1995)
included in the vegan package. The data consist of cover class
values for 30 species, along with several environmental vari-
ables such as moisture and land use, for each of 20 sites. We
assessed whether the Bray–Curtis distances (7) among the
meadows betray a significant effect of the amount of manure
applied. This is actually an ordinal variable, with levels from
0 to 4, but the tests treat it as categorical. The nonmetric
multidimensional scaling (NMDS; Kruskal, 1964) plot in
Figure 2 indicates a marked difference between the meadows
with no manure applied and those at levels 1–4.

Our analyses were performed in R version 2.7.0 (R Devel-
opment Core Team, 2008) with code based on the vegan
(version 1.15–0) functions mrpp and adonis, but modified to
use the same set of 9999 permutations for the two types of
tests. We confirmed that the MRPP with weights (2) and
squared Bray–Curtis measure produced exactly the same sig-
nificance level as the pseudo-F test: p = 0.0141. Changing
the power to which (7) was raised had little effect: for in-
stance, the MRPP with raw Bray–Curtis measure yielded p =
0.0147. However, changing the weights to (3) raised the p-
value to 0.0763. A simple explanation for this loss of signifi-
cance is that (3) places a higher proportion of the weight on
dissimilarities within large groups than does (2). Thus, the
rather high dissimilarities among observations in the largest
group, level 0, render δ not as small relative to the permuta-
tion distribution.

Changing the MRPP weights has not had a dramatic effect
in most examples we have studied. But in this case, weights
(2) produced results seemingly more in line with the NMDS
plot than did weights (3). As noted in Section 3.1, Mielke
and Berry (2007) favor weights (2) over (3) for asymptotic
efficiency reasons. To this argument one might add that, by
Proposition 2, the former choice brings MRPP into line with
the pseudo-F approach.

7.2 Functional Connectivity Data
We now return to the functional connectivity data introduced
in Section 2. For comparison with the distance-based tests of
this article, we applied a mass-univariate permutation proce-
dure similar to that used by Church et al. (2009) for data
of the same type: for each of 499 permutations of the age-
group labels, we calculated F statistics for the age effect at
each of the 703 connections, and obtained the permutation
distribution of the maximum of the 703 F-statistics, to which
the real-data F-statistics were referred. Only one connection
was found significant even at the 0.4 level: that between the
subgenual anterior cingulate cortex and posterior cingulate
cortex, for which we obtained p = 0.038. The observed mean
correlations between these two regions were 0.05 for children,
0.25 for adolescents, and 0.40 for adults. These two regions
are the core nodes of the default mode network, and this find-
ing suggests that the strengthening of their connection may
be an important component of brain maturation, in line with
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Figure 2. Nonmetric multidimensional scaling plot of the 20 Dutch meadows, indicating the level of manure applied on a
scale from 0 to 4.

the findings of Kelly et al. (2009). Still, this test procedure
has several limitations. The finding of a single significantly
different connection offers no confirmation of the broader dif-
ferentiation of task-positive and task-negative networks, from
childhood to adulthood, as suggested by Figure 1. Indeed,
had we not ordered the rows and columns in that figure as
task-positive followed by task-negative based on a priori con-
siderations, the mass-univariate finding would not have led
us to suspect such a broad pattern of differential connectivity
among the age groups. Furthermore, due to the need for sep-
arate tests at each connection, the relatively modest number
of permutations required over 11 minutes on a MacBook Pro
with a 2.16 GHz Intel Core Duo processor; applications to not-
much-larger data sets could be excessively time-consuming.

In view of these limitations, the distance-based permuta-
tion tests implemented in the vegan package offer a useful
complement to the mass-univariate analysis. We applied an
MRPP to the three age groups, after applying the Fisher
(1921) z transformation to the correlations, as is commonly
done for functional connectivity data. The dissimilarity used
was the square of the Frobenius metric (e.g., Bickel and
Levina, 2008) between pairs of correlation matrices; this norm
can be defined, for two matrices A and B, as the Euclidean
distance between vec(A) and vec(B). It took just 3.8 sec-
onds to run 9999 permutations using the same machine as
above, resulting in a p-value of 0.0163; see Figure 3. (Without
squaring the Frobenius norm, we obtained p = 0.0212.) An
equivalent permutational MANOVA was slower (9.7 seconds),

but contributed the additional information that age group ex-
plains about 4.9% of variation, in the sense of (8). Moreover,
the latter method can be extended to include other predic-
tors. Adding gender to the model resulted in the analysis of
distance table shown in Table 1. Gender appears not to have
much effect, whereas, as we would expect, the p-value for age
group agrees very closely with the MRPP result. Subsequent
tests comparing each pair of age groups found a clear differ-
ence between children and adults (p = 0.0041) but no signif-
icant differences between the adolescents and the other two
groups, supporting the intuition that adolescent functional
connectivity patterns lie between those of children and adults.

Although tests of interactions lie beyond the scope of our
main development, they can be performed within either the
MRPP or the pseudo-F framework (Mielke and Berry, 2007;
Legendre and Anderson, 1999). We carried out a pseudo-F test
as described in Web Appendix A, and found no significant
age group-by-gender interaction (p = 0.215, based on 9999
permutations).

8. Discussion
Mielke and Berry (2007) describe applications of MRPP in a
wide array of disciplines from archeology to meteorology to
psychometrics. Pseudo-F tests have a shorter history, with ap-
plications first in ecology, then in genetics, and more recently
in computer graphics (Čad́ık et al., 2008). Thus, specialists
in different fields may be conducting distance-based permu-
tation tests under these two paradigms, with at best limited



642 Biometrics, June 2010

Test statistic

Fr
eq

ue
nc

y

53.0 53.5 54.0 54.5

0
50

0
10

00
15

00
20

00

Figure 3. Permutation distribution of average within-group dissimilarity among the fMRI correlation matrices, with a
vertical line indicating the observed value. This figure appears in color in the electronic version of this article.

Table 1
Analysis of distance table for the functional connectivity data

df SS MS F R2 Pr(>F )

Age group 2 68.3076 34.1538 1.2735 0.0494 0.0164
Gender 1 27.8779 27.8779 1.0395 0.0202 0.3309
Residuals 48 1287.3076 26.8189 0.9305
Total 51 1383.4932 1

awareness of the close relationship between them. Such a situ-
ation contributes to a lack of understanding across disciplines.
It is our hope that the equivalence results presented here will
help to reduce this mutual incomprehension. In addition, we
hope that our neuroimaging application may inspire a few
researchers to consider distance-based permutation tests as
a tool for meeting the challenges posed, with increasing fre-
quency, by high-dimensional data analyses.

9. Supplementary Materials
Web Appendix A, referenced in Sections 3.2 and 7.2; Web
Appendix B, referenced in Sections 4 and 5; and Web
Appendix C, referenced in Section 6, are available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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